UNIVERSITY EXAMINATIONS

2019 /2020 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE CS/ASC

COURSE CODE: MAT 314
 COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS I

INSTRUCTION TO CANDIDATES

- SEE INSIDE

INSTRUCTION TO CANDIDATES

i. Answer ALL questions from section A and any THREE from section B
ii. Do not write on the question paper.

SECTION A (31 MARKS): Answer all questions in this section.

a) Define the following:
i) Exact differential equation
ii) Singular solution.
b) Show that the differential equation $(a x+b y+c) d x-((A+1) x+B y+C) d y=0$ is an exact differential equation iff $A+b=1$
c) Solve the equation $x y^{\prime}=x e^{-\frac{y}{x}}+y$.
d) Solve the linear fractional equation $y^{\prime}=\frac{x+y-3}{x-y-1}$
e) Is $e^{x} \cos 2 x$ a solution to $y^{\prime \prime}+4 y=0$? (2 marks)

QUESTION TWO (15 marks)

a) Find the particular solution for the differential equation $\frac{d^{2} y}{d x^{2}}-y=0, y(0)=1$ and $y^{\prime}(0)=1$.
b) Use appropriate method to obtain the solution of $x \frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}=0 \quad$ (5 marks)
c) Find the orthogonal trajectory of $x^{2}-y^{2}=1$
d) Solve $y^{\prime \prime}+5 y^{\prime}+6 y=0$. (2 marks)

SECTION B: 39 MARKS (ATTEMPT ANY THREE QUESTIONS)

QUESTION THREE (13 MARKS)

a) Obtain the solution of the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=3 x \quad$ (5 marks)
b) A thermometer reading $100^{\circ} \mathrm{F}$ is placed in a pan of oil maintained at $10^{\circ} \mathrm{F}$. What is the temperature of the thermometer when $t=10 \mathrm{sec}$, if its temperature is $60^{\circ} \mathrm{F}$ when $t=4 \mathrm{sec}$?

QUESTION FOUR (13 MARKS)

Solve ;
a) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-4 y=2 \cos 3 x$.
b) $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=x^{3}$.
c) $\frac{d y}{d x}+y \cos x=\cos x$

QUESTION FIVE (13 MARKS)

a) Consider the initial value problem $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 y=0, y(0)=1$, and $y^{\prime}(0)=-1+2 \sqrt{3}$
i) Find its solution (4 marks)
ii) Write the solution in the form $C e^{\alpha x} \cos (\beta x-\alpha)$
b) Solve the equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{1}{1+e^{2 x}}$.
(5 marks)

QUESTION SIX (13 MARKS)

a) Ignoring the air resistance, a sailboat starting from rest accelerates $\left(\frac{d v}{d t}\right)$ at a rate proportional to the differences between the velocities of the wind and the boat. Write the velocity as a function of time if the wind is blowing at $20 \mathrm{~m} / \mathrm{s}$ and after one second the boat is moving at $5 \mathrm{~m} / \mathrm{s}$. Assume that the boat started from rest. (8 marks)
b) If the integrating factor of the differential equation $M(x, y) d x+N(x, y) d y=0$ is a function of x only, obtain the expression for integration factor.

QUESTION SEVEN (13 MARKS)

a) In the following problem, find the integrating factor of $3 x^{2} y d x-2 x^{3} d y=0$ (5 marks)
b) A cup of coffee (temperature $=190^{\circ} \mathrm{F}$) is placed in a room whose temperature is $70^{\circ} \mathrm{F}$. After five minutes, the temperature of the coffee has dropped to $160^{\circ} \mathrm{F}$. How many more minutes must elapse before the temperature of the coffee is $130^{\circ} \mathrm{F}$? (8 marks)

