MAT 314

OFFICE OF THE DEPUTY PRINCIPAL

ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2019 /2020 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE CS/ASC

COURSE CODE: MAT 314

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS I

DATE: 5th DEC 2019

TIME: 9AM-12PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

Page 1 of 3

MAT 314

MAT 314: ORDINARY DIFFERENTIAL EQUATIONS I

STREAM: BSc (CS&ASC) DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- *i.* Answer ALL questions from section A and any THREE from section B
- *ii.* Do not write on the question paper.

SECTION A (31 MARKS): Answer all questions in this section.

- a) Define the following:
 - i) Exact differential equation
 - ii) Singular solution.
- b) Show that the differential equation (ax + by + c)dx ((A + 1)x + By + C)dy = 0 is an exact differential equation iff A + b = 1 (3 marks)
- c) Solve the equation $xy' = xe^{\frac{-y}{x}} + y$. (3 marks)
- d) Solve the linear fractional equation $y' = \frac{x+y-3}{x-y-1}$ (4 marks)
- e) Is $e^x \cos 2x$ a solution to y'' + 4y = 0? (2 marks)

QUESTION TWO (15 marks)

a)	nd the particular solution for the differential equation $\frac{d^2y}{dx^2} - y = 0$, $y(0) = 1$ and	
	y'(0) = 1.	(4 marks)
b)	Use appropriate method to obtain the solution of $x \frac{d^3 y}{dx^3} - 2 \frac{d^2 y}{dx^2} = 0$	(5 marks)
c)	Find the orthogonal trajectory of $x^2 - y^2 = 1$	(4 marks)
d)	Solve $y'' + 5y' + 6y = 0$.	(2 marks)

SECTION B: 39 MARKS (ATTEMPT ANY THREE QUESTIONS)

QUESTION THREE (13 MARKS)

- a) Obtain the solution of the differential equation $\frac{d^2 y}{dx^2} 2\frac{dy}{dx} = 3x$ (5 marks)
- b) A thermometer reading $100^{\circ} F$ is placed in a pan of oil maintained at $10^{\circ} F$. What is the temperature of the thermometer when $t = 10 \sec$, if its temperature is $60^{\circ} F$ when $t = 4 \sec ?$ (8 marks)

(4 marks)

QUESTION FOUR (13 MARKS)

Solve ;
a)
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} - 4y = 2\cos 3x$$
. (5 marks)
b) $\frac{d^2 y}{dx^2} + 5\frac{dy}{dx} + 6y = x^3$. (5 marks)

c)
$$\frac{dy}{dx} + y\cos x = \cos x$$

QUESTION FIVE (13 MARKS)

a) Consider the initial value problem $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 4y = 0$, y(0) = 1, and

$$y'(0) = -1 + 2\sqrt{3}$$

- i) Find its solution (4 marks)
- ii) Write the solution in the form $Ce^{\alpha x} \cos(\beta x \alpha)$ (3 marks)

b) Solve the equation
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{1}{1 + e^{2x}}$$
. (5 marks)

QUESTION SIX (13 MARKS)

- a) Ignoring the air resistance, a sailboat starting from rest accelerates $\left(\frac{dv}{dt}\right)$ at a rate proportional to the differences between the velocities of the wind and the boat. Write the velocity as a function of time if the wind is blowing at $20 \frac{m}{s}$ and after one second the boat is moving at $5 \frac{m}{s}$. Assume that the boat started from rest. (8 marks)
- b) If the integrating factor of the differential equation M(x, y)dx + N(x, y)dy = 0 is a function of x only, obtain the expression for integration factor. (5 marks)

QUESTION SEVEN (13 MARKS)

- a) In the following problem, find the integrating factor of $3x^2ydx 2x^3dy = 0$ (5 marks)
- b) A cup of coffee (temperature = 190° F) is placed in a room whose temperature is 70° F. After five minutes, the temperature of the coffee has dropped to 160° F. How many more minutes must elapse before the temperature of the coffee is 130° F? (8 marks)

Page 3 of 3

(3 marks)